2x^2=782

Simple and best practice solution for 2x^2=782 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2=782 equation:



2x^2=782
We move all terms to the left:
2x^2-(782)=0
a = 2; b = 0; c = -782;
Δ = b2-4ac
Δ = 02-4·2·(-782)
Δ = 6256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6256}=\sqrt{16*391}=\sqrt{16}*\sqrt{391}=4\sqrt{391}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{391}}{2*2}=\frac{0-4\sqrt{391}}{4} =-\frac{4\sqrt{391}}{4} =-\sqrt{391} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{391}}{2*2}=\frac{0+4\sqrt{391}}{4} =\frac{4\sqrt{391}}{4} =\sqrt{391} $

See similar equations:

| (3x+20)+(4x+35)+90=180 | | -6(8x-3)=-43x+42 | | 5(6+2x)=20x5(6+2x)=20x | | 16+17+18=x | | (3x+20)+(4x+35)=180 | | 5-7n+7n=5 | |  8x + 72  =  8(x + 9) | | 12k-8=-44 | | 1) 2n3−n2−136n=0 | | 16-42=x | | 2/x=90 | | -6n+8=-16 | | 2t-3/4=t-11/3 | | 2(4x+3)=222(4x+3)=22 | | 24-6n=-42 | | 89=g+28 | | −9x−20+12x=9(x−2)+4 | | 84.4=31.8n+20.8 | | 23+x-10=180 | | 38+19=x | | ​(3x-5​)(2x+3​)=0 | | -x+5(-x-9)=(-7x-3)+2 | | 65+3x+2=180 | | 19+2x+1=180 | | -4=1/3m | | 60-23=x | | 27+x-4=180 | | 4-9m+6=24-7 | | 30=y-10/5.5 | | ​(4x-7​)(2x+5​)=0 | | 9x3/2(-4x-6)=-5-9(9x-9( | | 82h-26h+4h-48h-10h=30 |

Equations solver categories